sexta-feira, 8 de abril de 2011

ATIVIDADE III

A teoria dos Conjuntos.
1     A teoria avançada dos conjuntos foi desenvolvida por volta do ano 1872 pelo matemático alemão Georg Cantor (1845 / 1918) e aperfeiçoada no início do século XX por outros matemáticos, entre eles, Ernst Zermelo (alemão - 1871/1956), Adolf Fraenkel (alemão - 1891/ 1965), Kurt Gödel (austríaco - 1906 /1978), Janos von Newman (húngaro - 1903 /1957), entre outros.

.1 - Relação de pertinência:
Sendo x um elemento do conjunto A , escrevemos x Î A,
onde o símbolo Î significa "pertence a".
Sendo y um elemento que não pertence ao conjunto A , indicamos esse fato com a notação
y Ï A.

O conjunto que não possui elementos , é denominado conjunto vazio e representado pela letra grega fi: f .
Com o mesmo raciocínio, e opostamente ao conjunto vazio, define-se o conjunto ao qual pertencem todos os elementos, denominado conjunto universo, representado pelo símbolo U.
Assim é que, pode-se escrever como exemplos:
Æ = { x; x ¹ x} e U = {x; x = x}.


2.2 - Subconjunto
Se todo elemento de um conjunto A também pertence a um conjunto B, então dizemos que

A é subconjunto de B e indicamos isto por A Ì B.

Notas:a) todo conjunto é subconjunto de si próprio. ( A Ì A )
b) o conjunto vazio é subconjunto de qualquer conjunto. (Æ Ì A)
c) se um conjunto A possui m elementos então ele possui 2m subconjuntos.
d) o conjunto formado por todos os subconjuntos de um conjunto A é denominado
conjunto das partes de A e é indicado por P(A).Assim, se A = {c, d} , o conjunto das partes de A é dado por   P(A) = {f , {c}, {d}, {c,d}}
e) um subconjunto de A é também denominado parte de A.


3 - Conjuntos numéricos fundamentais
Entendemos por conjunto numérico, qualquer conjunto cujos elementos são números. Existem infinitos conjuntos numéricos, entre os quais, os chamados conjuntos numéricos fundamentais, a saber:

3.1 - Conjunto dos números naturais
 
N = {0,1,2,3,4,5,6,... }


3.2 - Conjunto dos números inteirosZ = {..., -4,-3,-2,-1,0,1,2,3,... }
Nota: é evidente que N Ì Z.


3.3 - Conjunto dos números racionaisQ = {x | x = p/q com p Î Z , q Î Z e q ¹ 0 }. (o símbolo | lê-se como "tal que").
Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o denominador diferente de zero. 

Lembre-se que não existe divisão por zero!.
São exemplos de números racionais: 2/3,  -3/7,   0,001=1/1000,   0,75=3/4,   0,333... = 1/3,
7 = 7/1, etc.

Notas:

a) é evidente que N Ì Z Ì Q.
b) toda dízima periódica é um número racional, pois é sempre possível escrever uma dízima periódica na forma de uma fração.
Exemplo: 0,4444... = 4/9


3.4 - Conjunto dos números irracionaisQ' = {x | x é uma dízima não periódica}. (o símbolo | lê-se como "tal que").
Exemplos de números irracionais:
p = 3,1415926...  (número pi = razão entre o comprimento de qualquer circunferência e o seu diâmetro)
2,01001000100001... (dízima não periódica)
Ö 3 = 1,732050807... (raiz não exata).

3.5 - Conjunto dos números reais
R = { x | x é racional ou x é irracional }.

Notas:a) é óbvio que N Ì Z Ì Q Ì R
b) Q' Ì R
c) um número real é racional ou irracional; não existe outra hipótese!
5 - Operações com conjuntos

5.1- União ( È )
Dados os conjuntos A e B , define-se o conjunto união A È B = { x; x Î A ou x Î B}.
Exemplo: {0,1,3} È { 3,4,5 } = { 0,1,3,4,5}. Percebe-se facilmente que o conjunto união contempla todos os elementos do conjunto A ou do conjunto B.

Propriedades imediatas:
a) A È A = A
b) A È f = A
c) A È B = B È A (a união de conjuntos é uma operação comutativa)
d) A È U = U , onde U é o conjunto universo.


5.2- Interseção ( Ç )
Dados os conjuntos A e B , define-se o conjunto interseção A Ç B = {x; x Î A e x Î B}.
Exemplo: {0,2,4,5} Ç { 4,6,7} = {4}. Percebe-se facilmente que o conjunto interseção contempla os elementos que são comuns aos conjuntos A e B.

Propriedades imediatas:
a) A Ç A = A
b) A Ç Æ = Æ
c) A Ç B = B Ç A ( a interseção é uma operação comutativa)
d) A Ç U = A onde U é o conjunto universo.


Exemplo de conjuntos.